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1 Markov Chain and Transition probability

Definition 1.1 (Markovian property)
For a Markov chain, the conditional distribution of any future state Xn+1, is independent

of the past states X0, ..., Xn−1 and depends only on the present state Xn. This is called

the Markovian property.

Definition 1.2 (Markov Chain)
Consider a stochastic process {Xn, n = 0, 1, 2...} that takes on a finite or countable

number of possible values, which is denoted by the set of nonnegative integers {0, 1, 2...}.

If Xn = i, then the process is said to be in state i at time n. And whenever the process is

in state i, there is a fixed probability Pij that it will next be in state j. That is, the follow

equation holds for all states and all n ≥ 0. Such a stochastic process is called a Markov

chain.
P {Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X1 = i1, X0 = i0}

=P {Xn+1 = j | Xn = i} = Pij

Markov chain is a discrete time, discrete state stochastic process with Markovian property.

Definition 1.3 (One-step transition probabilities)
The value Pij represents the probability that the process will, when in state i, next make

a transition into state j. And it possesses following properties. There is a matrix form P

to present these transition probabilities.

Pij ≥ 0, i, j ≥ 0;
∞∑
j=0

Pij = 1, i = 0, 1, . . .

P =



P00 P01 · · · P0j · · ·
P10 P11 · · · P1j · · ·

...
... . . . ...

Pi0 Pi1 · · · Pij · · ·
...

...
... . . .





2 States and Class

Definition 1.4 (n-Step transition probabilities)
The n-step transition probabilities Pn

ij is the probability that a process is in state i will be

in state j after n additional transitions. That is, as follows. Note that P 1
ij = Pij .

Pn
ij = P {Xn+m = j | Xm = i} , n ≥ 0 and i, j ≥ 0

Theorem 1.1 (Chapman-Kolmogorov equations)

Pn+m
ij =

∞∑
k=0

Pn
ikP

m
kj for all n,m ≥ 0 and i, j ≥ 0

Let P (n) denote the matrix of n-step transition probabilities Pn
ij , then we have

P (n+m) = P (n) · P (m)

=



Pn
00 Pn

01 · · · Pn
0j · · ·

Pn
10 Pn

11 · · · Pn
1j · · ·

...
... . . . ...

Pn
i0 Pn

i1 · · · Pn
ij · · ·

...
...

... . . .


·



Pm
00 Pm

01 · · · Pm
0j · · ·

Pm
10 Pm

11 · · · Pm
1j · · ·

...
... . . . ...

Pm
i0 Pm

i1 · · · Pm
ij · · ·

...
...

... . . .


And this implies the follow equation. Let P (0)) = I , then P (n) = P (n) · P (0).

P (n) = P · P (n−1) = P · P · P (n−2) = · · · = Pn

Proof
Pn+m
ij = P {Xn+m = j | X0 = i}

=

∞∑
k=0

P {Xn+m = j,Xn = k | X0 = i}

=

∞∑
k=0

P {Xn+m = j | Xn = k,X0 = i}P {Xn = k | X0 = i}

=

∞∑
k=0

Pm
kjP

n
ik

■

2 States and Class

Definition 2.1 (Communicate: i ↔ j)
Two states i and j accesible to each other are said to communicate, and we write i ↔ j.

Lemma 2.1 (Communicate’s property)
i ↔ i

if i ↔ j, then j ↔ i

if i ↔ j and j ↔ k, then i ↔ k
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3 Recurrency

Definition 2.2 (Class and class property)
Two states that communicate are said to be in the same class. Note that any two classes

are either disjoint or identical. A property is called a class property if the property is

shared by states in the same class.

Definition 2.3 (Irreducible Markov chain)
A Markov chain is said to be irreducible if there is only one class.

Definition 2.4 (Periodicity)
State i is said to have period d if Pn

ii = 0 whenever n is not divisible by d and d is the

greatest common divisor of {n : Pn
ii > 0}.

Remark The system cannot go back to the original state if n ̸= kd, where k is an non-negative

integer; otherwise, the system may go back to the original state.

Definition 2.5 (Aperiodic)
A state with period 1 is said to be aperiodic.

Lemma 2.2
Let d(i) denote the period of i, this is a class property. That is, if i ↔ j, then d(i) = d(j).

3 Recurrency

Definition 3.1 (fn
ij and fij)

fn
ij is the probability that, starting in i, the first transition into j occurs at time n.

fn
ij = P {Xn = j,Xk ̸= j, k = 1, . . . , n− 1 | X0 = i}

fij denotes the probability of ever making a transition into state j, given that the process

starts i.

fij =
∞∑
n=1

fn
ij

Remark For i ̸= j, fij is positive iff j is accessible from i.

Definition 3.2 (Recurrent and transient)
State j is said to be recurrent if fjj = 1, and transient otherwise.

Lemma 3.1 (Recurrency’s and Transient’s property)
State j is recurrent iff

∑∞
n=1 P

n
jj = ∞, that is,

E [ # of visits to j | X0 = j] = ∞

State j is transient, then each time the process returns to j with a fail probability
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3 Recurrency

1−fjj , hence the number of visits is geometric with finite mean mjj = 1/(1−fjj).

If i is recurrent and i ↔ j, then j is recurrent. (Class property)

If i ↔ j and j is recurrent, then fij = 1.

Lemma 3.2
A finite-state Markov chain must have at least one of the states being recurrent.

Example 3.1 uplow, 2021 For example, states 1 and 2 are recurrent, and states 3 and 4 are

transient.

Figure 1: Recurrent vs. Transient

Definition 3.3 (Expected # of transitions for return µjj)
Let µjj denote the expected number of transitions needed to return to state j.

µjj =

 ∞ if j is transient∑∞
n=1 nf

n
jj if j is recurrent.

Remark Note that the expected times to go back to state j is different from the expected times

to visit state j.

Definition 3.4 (Positive and Null Recurrence)
If state j is recurrent, then we say that it is positive recurrent if µjj < ∞ and null recurrent

if µjj = ∞.

Lemma 3.3
Positive (Null) recurrence is a class property.

Example 3.2 uplow, 2021 Consider a Markov chain which goes back to state 1 when n = 2k,

where k is an non-negative integer.

Figure 2: Positive and Null Recurrence
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4 Stationary Distribution

1. When p = 1/2, f (2)
11 = 1

2 , f
(4)
11 = 1

22
, f

(8)
11 = 1

23
, ... and other f i

11 are 0. So f11 =∑∞
i=

1
2i

= 1 and µ1 =
∑∞

i=
1
2i
2i = ∞.

2. When p = 1/4, f (2)
11 = 3

4 , f
(4)
11 = 3

42
, f

(8)
11 = 3

43
, ... and other f i

11 are 0. So f11 =∑∞
i=

3
4i

= 1 and µ1 = 3
∑∞

i=
1
4i
2i = 3.

The key part to distinguish between positive and null recurrence is that if the series of the product

of f i and i, i.e., the probability of going back to the state at the i times and the times needed to go

back to the state, converges, then the state is positive recurrent; otherwise if the series diverges,

then the state is null recurrent.

Definition 3.5 (Ergodic State)
A positive recurrent, aperiodic state is called ergodic.

Lemma 3.4 (Finite irreducible means all positive recurrent)
For any arbitrary irreducible Markov chain with a finite number of states, all states,

denoted by {0, 1, . . . ,M} are positive recurrent.

Proof

finite states → at least one recurrent state irreducible−−−−−−−→ all states recurrent

■

4 Stationary Distribution

Definition 4.1 (Stationary Distribution)
A probability distribution Pj is said to be stationary for the Markov chian if

Pj =

∞∑
i=0

PiPij , j ≥ 0

Lemma 4.1 (Property of Stationary Distribution)
If the probability distribution of X0 (Pj = P {X0 = j} , j ≥ 0) is a stationary distribu-

tion, then Xn will have the same distribution (stationary distribution) for all n.

Remark

P {X1 = j} =
∞∑
i=0

P {X1 = j,X0 = i} =
∞∑
i=0

P {X1 = j | X0 = i}P {X0 = i} =
∞∑
i=0

PiPij = Pj .

By induction,

P {Xn = j} =

∞∑
i=0

P {Xn = j,Xn−1 = i} =

∞∑
i=0

P {Xn = j | Xn−1 = i}P {Xn−1 = i} =

∞∑
i=0

PiPij = Pj
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5 Transitions among classes with transient states

Theorem 4.1 (Class of Irreducible Aperiodic Markov Chain)
An irreducible aperiodic Markov chain belongs to one of the following two classes:

1. Either the states are all transient or all null recurrent, in this case, Pn
ij → 0 as

n → ∞ for all i, j and there exists no stationary distribution.

2. Or else, all states are positive recurrent, that is,

πj = lim
n→∞

Pn
ij = 1/µjj > 0

In this case, {πj , j = 0, 1, 2, . . .} is a stationary distribution and there exists no

other stationary distribution.

Lemma 4.2 (Property of πj)
πj must be interpreted as the long-run proportion of time that the Markov chain is in state

j, and

πj =
∑
i

πiPij ,
∑
j

πj = 1

Theorem 4.2 (Interpreting a Markov chain as a renewal process)
Let Nj(t) denote the number of transitions into j by time t.

If j is recurrent and X0 = j, then Nj(t) is a renewal process with interarrival

distribution {fn
jj , n ≥ 1}.

If X0 = i, i ↔ j and j is recurrent, then Nj(t) is a delayed renewal process with

initial interarrival distribution {fn
ij , n ≥ 1}.

If i and j are communicate, then

P
{
limt→∞

Nj(t)
t = 1

µjj
| X0 = i

}
= 1

limn→∞

∑n
k=1 P

k
ij

n = 1
µjj

If j is aperiodic, then limn→∞ Pn
ij =

1
µjj

= πj

If j has period d, then limn→∞ Pnd
jj = d

µjj
= dπj

5 Transitions among classes with transient states

Lemma 5.1
Let R be a recurrent class of states. If i ∈ R and j /∈ R, then Pm

ij = 0 for all m ≥ 1.

Theorem 5.1 (fij among classes)
Let j be a given recurrent state and let T denote the set of all transient states. The set of

probabilities {fij , i ∈ T} satisfies

fij =
∑
k∈T

Pikfkj +
∑
k∈R

Pik, i ∈ T

where R denotes the set of states communicating with j.
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5 Transitions among classes with transient states

Example 5.1Gambler’s Ruin Problem Consider a gambler who at each play of the game

has probability p of winning 1 unit and probability q = 1 − p of losing 1 unit. Assuming

successive plays of the game are independent, we are interested in the probability fi(= fiN ) that

starting with i units, the gambler’s fortune will reach N before reaching 0. Alternatively, we can

consider a gambler with wealth i playing against an opponent with wealth N − i. In this case, fi
corresponds to the probability that the gambler wins the opponent’s wealth. If we let Xn denote

the player’s fortune at time n, then the process {Xn, n = 0, 1, 2, . . .} is a Markov chain with

transition probabilities

P00 = PNN = 1, Pi,i+1 = p = 1− Pi,i−1, i = 1, 2, . . . , N − 1

Solution This Markov chain has three classes: {0}, {1, 2, . . . , N − 1}, and {N}, the first and

third class being recurrent and the second transient.

fi = pfi+1 + qfi−1, i = 1, 2, . . . , N − 1 (Theorem 5.1)

⇕ p+ q = 1

fi+1 − fi =
q

p
(fi − fi−1) , i = 1, 2, . . . , N − 1

f2 − f1 =
q

p
(f1 − f0) =

q

p
f1

f3 − f2 =
q

p
(f2 − f1) =

(
q

p

)2

f1

...

fi − fi−1 =
q

p
(fi−1 − fi−2) =

(
q

p

)i−1

f1

...

fN − fN−1 =
q

p
(fN−1 − fN−2) =

(
q

p

)N−1

f1.

⇓ Adding the first i− 1 of these equations

fi − f1 = f1

[
q

p
+

(
q

p

)2

+ · · ·+
(
q

p

)i−1
]
, i = 2, 3, . . . , N

or

fi = f1

i−1∑
k=0

(
q

p

)k

=


1−(q/p)i

1−q/p f1 if q/p ̸= 1

if1 if q/p = 1
i = 2, 3, . . . , N

Using fN = 1 yields

fi =


1−(q/p)i

1−(q/p)N
if p ̸= 1/2

i
N if p = 1/2

i = 0, 1, . . . , N
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6 Reversed Chain and Time reversible

It is interesting to note that as N → ∞

fi →

1− (q/p)i if p > 1/2

0 if p ≤ 1/2

Theorem 5.2 (Expected # of periods spent in transient state: mij)
Consider a finite state Markov chain and suppose that the states are numbered so that

T = {1, 2, ..., t} denotes the set of transient states. For transient states i and j, let mij

denote the expected total number of periods spent in state j given that the chain starts in

state i. Conditioning on the initial transition yields the following equations, where δ(i, j)

is equal to 1 when i = j and 0 otherwise.

mij = δ(i, j) +
∑
k

Pikmkj = δ(i, j) +

t∑
k=1

Pikmkj mkj = 0∀k /∈ T

Let

Q =



P11 P12 · · · P1t

...
...

...

Pi1 Pi2 · · · Pit

...
...

...

Pt1 Pt2 · · · Ptt


M =



m11 m12 · · · m1t

...
...

...

mi1 mi2 · · · mit

...
...

...

mt1 mt2 · · · mtt


Then M = (I−Q)−1.

Proof
M = I+QM → (I−Q)M = I → M = (I−Q)−1

■

Lemma 5.2 (Relations of mij and fij)

fij = mij/mjj fjj = 1− 1/mjj

Proof
mij =E[ number of transitions into state j | start in i]

=E[ number of transitions into state j | start in i and visit j]fij

+ E[ number of transitions into state j | start in i and never visit j] (1− fij)

=mjjfij

Then we see fij = mij/mjj , by Lemma 3.1, we have fjj = 1− 1/mjj . ■
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6 Reversed Chain and Time reversible

6 Reversed Chain and Time reversible

Definition 6.1 (Stationary Chain or Steady state)
An irreducible positive recurrent Markov chain is stationary if the initial state is chosen

according to the stationary probabilities. We say that such a chain is in steady state.

Remark In the case of an ergodic chain, i.e., irreducible, positive recurrent, and aperiodic, this

is equivalent to imagining that the process begins at time t = −∞.

Theorem 6.1 (Reversed chain)
Consider an irreducible stationary Markov chain with transition probabilities Pij . If one

can find nonnegative numbers πi, i ≥ 0, summing to unity, and a transition probability

matrix P ∗ =
[
P ∗
ij

]
such that

πiPij = πjP
∗
ji

then the πi, i ≥ 0 are the stationary probabilities and P ∗
ij are the transition probabilities

of the reversed chain.

Remark This is useful in solving πi.

Definition 6.2 (Time reversible)
If P ∗

ij = Pij for all i, j, then the Markov chain is said to be time reversible. That is,

πiPij = πjPji for all i, j

For all states i, j, πiPij means the rate at which the process goes from i to j, πjPji means

the rate at which it goes from j to i.

Theorem 6.2 (Time reversible’s condition)
A stationary Markov chain is time reversible iff starting in state i, any path back to i has

the same probability as the reversed path, for all i. That is,

Pi,i1Pi1,i2 · · ·Pik,i = Pi,ikPik,ik−1
· · ·Pi1,i for all states i, i1, . . . , ik

7 Random Walk

Example 7.1General Random Walk Let Xi be i.i.d with P{Xi = j} = aj , j = 0,±1, ....

And let S0 = 0, Sn =
∑n

i=1Xi = Sn−1 +Xn, then {Sn, n ≥ 0} is called the general random

walk. {Sn, n ≥ 0} is a Markov chain because Sn+1 depends on Sn and is independent of Si for

all i < n.
Pij = P {Sn+1 = j | Sn = i} = P {Sn +Xn+1 = j | Sn = i}

= P {Xn+1 = j − i} = aj−i
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